Linear Parsing Expression Grammars

ONariyoshi Chida and Kimio Kuramitsu
Yokohama National University, Japan

chida-nariyoshi-pg@ynu.jp
kimio@ynu.ac.jp
@LATA2017, March 8, 2017

IK 8 “
KonohaScript

YOKOHAMA

|||||||||||||||

Parsing Expression Grammars

(PEGSs) |.

« A formal grammar introduced by B. Ford in
2004.

« PEGs are used for parser generators
- PEG.js : a parser generator for JavaScript
- Rats! (PLDI 2006)

- Nez (Onward! 2016)

Parsing Expression Grammars

(PEGSs) |.

Example
- A PEG which recognizes a simple mathematical
expression.
Expression <+ Sum
Sum < Product((+/—)Product) %
Product <+ Value((x/+)Value) %
Value <+ [0 —9]x

Parsing Expression Grammars

(PEGSs) |.

Example

- A PEG which recognizes a simple mathematical
expression.

A nonterminal. An expression.

Value <+ [0 —9]x

Parsing Expression Grammars

(PEGSs) |.

Example

- A PEG which recognizes a simple mathematical
expression.

A choice in PEG. /
Ordered choice. /

Parsing Expression Grammars

(PEGSs) |.

Example

- A PEG which recognizes a simple mathematical
expression.

A repetition in PEG.

Quiz: |.
* Are these PEGs convertible to DFAS?
1. A< aAb/c

2. A< aAa/aa

3. A< (a/ab) A(a/ab)/ aa

Quiz: |.

* Are these PEGs convertible to DFAS?
1. A< aAb/c

Quiz: |.

* Are these PEGs convertible to DFAS?
1. A< aAb/c
Answer : No. .
The language is {a'ch’ | i > 0},
2.

Quiz: |.

* Are these PEGs convertible to DFAS?
1.

2. A< aAa/aa

10

Quiz: |.

* Are these PEGs convertible to DFAS?
1. d

SENSERS

2. A< aAa/aa
Answer : Yes. .
2 .
The language is {a** |1 > 1},

3.

11

Quiz: |.

* Are these PEGs convertible to DFAS?
1.

3. A< (a/ab) A(a/ab)/ aa

12

Quiz: |.

* Are these PEGs convertible to DFAS?

1.
Due to the priority,
(a / ab) is the same as a.

3. A< (a/ab) A(a/ab)/ aa
Answer : Yes. |
The language is {a** | i > 1}.
This is the same as question 2.

13

Quiz: |.

* Are these PEGs convertible to DFAS?

1. A<aAb/c
Can we check the regularity
for an arbitrary PEGS?

2. A< aAa/aa

3. A< (a/ab) A(a/ab)/ aa

14

Quiz: |.

* Are these PEGs convertible to DFAS?

1. A<aAb/c
Can we check the regularity
for an arbitrary PEGS?
2. A<~ aAa/aa D
3. A<~ (a/ab) A
Undecidable problem...

15

Contribution |.

We define the syntactic subclass of PEGs.
- We call it Linear PEG (LPEG).

Merits

- Many techniques of REs are available
« DFA transformation

The subclass of PEGs that is
equivalent to DFAs

16

Outline |.

 Parsing Expression Grammar (PEG)
e Linear Parsing Expression Grammar (LPEG)
- Regularity of LPEGs
-From DFAs to LPEGs
-From LPEGs to DFAs
- Conclusion

17

Outline |.

 Parsing Expression Grammar (PEG)

18

Parsing Expression Grammar (PEG)l.

-PEG (G'is a 4-tuple (Ng, X, es, Pa)
- N+ A finite set of nonterminals
-Y,: A finite set of terminals
-eg € P : A start expression
-Po € N — e : Afinite set of rules

19

Parsing Expression Grammar (PEG)l.

‘P € Ng — e: Arule
@ I= € Empty
a Character
Any character
ee Sequence
e / e Prioritized choice
e* Zero or more repetition
le Not-predicate
&e And-predicate (=lle)
A Nonterminal

20

‘P € Ng — e: Arule
@ I= € Empty

Parsing Expression Grammar (PEG)l.
a Character
Any character

ee Sequence

e / e Prioritized choice

e* Zero or more repetition
le Not-predicate

&e And-predicate (=lle)
A Nonterminal

21

Parsing Expression Grammar (PEG)l.

‘Po € Ng — e: Arule
@ ii=€ Empty
a Character
Any character

ee Sequence
e / e Prioritized choice
e* Zero or more repetition |__epetition

le Not-predicate
&e And-predicate (=!le)
A Nonterminal

22

Parsing Expression Grammar (PEG)l.

‘P € Ng — e: Arule

@ I= € Empty
a Character

Any character
ee Sequence
e / e Prioritized choice
e* Zero or more repetition
le Not-predicate
&e And-predicate\\ (= !le)
A Nonterminal
lookahead

23

Languages [

»The language L(G)of a PEG G =)
(Ng, %, es, Pg) is the set of strings® € 2
for which the start expression €5 matches .

Example

Let G = ({},{a,b},a,{}).
L(G) =

{w | w € ¥*, the prefix of the string w is a}

24

Languages |

-The Iazguage L(G)of a PEG GG =)
(Na, X, es, Pg) |s the set of strings € 2.

for which the start expression €5 matches x.

Example

Let G = ({},{a,
L(G) =
{w | w e X*, thepre

Do not need to match entire string.

25

Languages |

-The Iazguage L(G)of a PEG GG =)
(Ng, ¥, es, Pg) |s the set of strings* € 2

for which the start expression €5 matches .

Example

Let G = ({},{a, 0}, a,{}).
L(G) =

{w | w € ¥*, the prefix of the string w is a}

W = a, aa, ab, aaa, aab, aba, abb,--

26

Outline |.

e Linear Parsing Expression Grammar (LPEG)

27

Linear Parsing Expression Gramma

(LPEG) 'i.

- LPEG (Gis a 4-tuple(Ng, 2, es, Pg)
- N+ A finite set of nonterminals
-Y,: A finite set of terminals
-eg € P : A start expression
-Po € N — e : Afinite set of rules

28

Linear Parsing Expression Gramma

(LPEG) 'i.

€ .:=p
P A A parsing expression that
p e excludes some patterns of
e/e nonterminals
e e (linear parsing expression)
le e

*p.:=E€
d
' A parsing expression that
PP excludes nonterminals
p*/ P (n-free parsing expression)
P
&p
Ip

29

Linear Parsing Expression Gramma

(LPEG) i.

PEGs whose syntax is limited to right-linear.

Linear Parsing Expression Gramma

(LPEG) 'i.

Example

PEG G = ({A, B},{a,b,c}, A, Pg)is an
LPEG, where P consists of the following
rules:

A < aA/bB/c
B <« aB/bA/c

Nonterminals are not followed by expressions

31

Linear Parsing Expression Gramma

(LPEG) 'i.

Example
PEG G = ({A, B}, {a,b,c}, A, Pg)is an

not LPEG, where P consists of the following
rules:

Bad

A < aAa/bB *
B <+ aB/b

32

Outline

- Regularity of LPEGs

33

From DFAs to LPEGs [

Theorem
I LPEGs are a class that 1s equivalent to DFAs. I

Steps of the proof

1. We show that for any DFA D there exists
an LPEG G such that L(D) = L(G).
= From DFAs to LPEGs

2. We show that for any LPEG G there exists
a DFA D such that L(G) = L(D).
= From LPEGs to DFAs

34

Outline

-From DFAs to LPEGs

35

From DFAS to LPEGs

Theorem

For any DFA D there exists an LPEG G such that
L(D) = L(G).

Sketch of proof

* Medeiros et al. showed the transformation from
RE to PEG.

 We show that a PEG transformed from a RE is a
right form of LPEG by mathematical induction.

36

Outline

-From LPEGs to DFAs

37

From LPEGS to DFAsS

Theorem

For any LPEG (G there exists a DFA [such that

LG =LD).

38

A transformation from an LPEG to
a DFA
RE

Thompson'’s Subset
construction construction

L DFA

Extended Thompson’ s [Subset construction J
construction

A transformation from an LPEG to
a DFA
RE

Thompson'’s Subset
construction construction

L DFA

Extended Thompson's [Subset construction]
construction

Why BFA?

* NFAs have:--

“OR"” transition

An input is
accepted

if A or B are
accepted.

* NFAs do not have::-

“AND"” transition

An input is
accepted

if Aand B are
accepted.

41

Why BFA?

e NFAg hAave:--

/" We need this transition

to represent lookaheads.

G
v &
O

&e, e,

.

“OR"” transition

* NFAs do not have::-

An input is
accepted

if Aand B are
accepted.

“AND"” transition

42

Why BFA? |

*In order to convert LPEGs to DFASs,
we need automata that meets the following
conditions:

 The automata

1. Have the “AND” transition and “NAND"”
transition.

2. Are convertible to DFAs.

43

Why BFA? |

*In order to convert LPEGs to DFASs,
we need automata that meets the following
conditions:

 The automata

1. Have the “AND” transition and “NAND"”
transition.

. Are convertible to DFAs.
Boolean finite automata (BFAs)

44

Boolean Finite Automata (BFAS) I.

A BFAis a 5-tuple B = (Q, %, 6, f°, F)
- () is a finite non-empty set of states.
- Y is a finite set of terminals.

- 0 is a transition function that maps a
state and a terminal into a boolean
function

- fYs an initial boolean function.
- I’ is a finite set of accepting states.

45

Boolean Finite Automata (BFAS) I.

« A BFA is a generalization of NFA.
- We can use general boolean functions on BFAs.
« AND, NOT, OR ---
* Not regex.
« A BFA is convertible to a DFA.

Theorem 2 (in [1])
For every boolean automaton B with n states

there exists an equivalent deterministic automaton
Ap with at most 2° states, such that L(Ag) = L(B).

[1] J.A. Brzozowski and E. Leiss: On equations for regular languages,
finite automata, and sequential networks. Theoretical Computer Science.
10(1), 19-35(1980) 46

A transformation from an LPEG to
a DFA
RE

Thompson'’s Subset
construction construction

L DFA

Extended Thompson's [Subset construction]
construction

47

Extended Thompson’s construction |.

- We can formalize the extended Thompson'’s
construction as a function 1g.

*The function I’z : ¢ — B
- Takes a linear parsing expression.

- Returns a BFA that the language is
equivalent to the linear parsing
expression.

48

Function Tg

The foundation follows
Morihata’s work
(Morihata,2012)
for RE with lookaheads.

We extend his work
with handling
recursion.

(Q.%,8,f°,FUP)
(Q72757f07F7P> - TB(eS)

&' ={((s,.),8) | s € P}Ud I.
{s}, 2, {},s,{s} {})

{s, ¢}, %,{((s,a), 1)}, s, {t}, {})

QU {s}, 2,6, f9,{s}, FUP)

Q,%,0, f°, F, P) = Tp(copy(e))
Q1UQ2,%,68,¢(f7, f3, F1), Fo, Py U Py)

Q1,%,61, f1, F1, P1) = Tg(er),

(Q2,%, 02, f3, Fo, Py) = Tg(e2)

0 ={((s,a),9(t, f3, F1)) | ((s,a),t) € 61} U &

Tg(e1 |leres)

(Q1UQ2,3,01 Uba, fYV f3, F1 UFy, PLU Py)

(Q1,%, 61, f1, F1, P1) = Tg(er)

(Q2, 3,02, f3, Fa, P) = T(ez)

Tg(e*le)

(QU{s},%,0, sV fO,Fu{s}, P)

(Q,%,6, f°, F, P) =Tg(e)

§ = {((s.0).0(t, f°. F)) | ((s.0).1) € 5)

(Tp(Pc(A))
(first application)

({}7 E? {}7 ftmpA> {}7 {})

| (otherwise) 49

AAAAAA

Function Tg

Morihata’s works
for RE with lookahead

Our extension

(Q,%,¢, f°, FUP)
(Q,%,0, f°, F, P) = Tp(es)

& ={((s,.),s) | s€ P}US I.
{sh 2, {}L s {sh{})

({82}, 2, 1((s,),) }s 5,4t} 1)

(QU{s}, X, 0,sA fO {s}, FUP)

(Q,%,6, f°, F, P) = Tg(copy(e))
(Q1UQ2,%,0,6(f), f3, F1), Fo, PL U Py)
(Q1,%, 61, f1, F1, P1) = Tg(e1),
(Q2,%, 02, f3, Fa, Po) = Tp(e2)
§={((s,a),8(t, f5, F1)) | ((s,a),t) € 51} U dy
Tg(e1 |leres)

(Q1UQ2,%,81 Udy, fOV £ Fy U Fy, P U Py)
(Q1,%,01, 1, F1, P) = Tg(er)

(Q2,%, 02, 3, Fa, P,) = Tp(e2)

Tg(e*le)

(QU{s}, 2,8, sV fO,Fu{s}, P)
(Q,%,6, f°, F, P) =Tg(e)

5 = {((s).6(t, 2. F)) | ((s.a).1) € 5}

(Tp(Pa(A))
(first application)

{52 A} fompas {35 {D)

| (otherwise) 50

From LPEGS to DFAsS

Theorem

Let G = (Ng, X, eg, Pg) and B = Tg(eg.*).
Then, L(G) = L(B).

Sketch of Proof

The proof is by induction on the structure
of a linear parsing expression e. We
assume that Tz(e) is a BFA such that the

language is equivalent to the language of
e.

51

Sketch of Proof |.

Case: e =le
- We assume that T(e) is a BFA such that the
language is equivalent to the language of e.

Tp(le) = (QU{s},%,8,sA [0 {s},FUP)
where (Q,%,6, f°, F, P) = Tx(e)

» We confirm that ZB(e) is equivalent to e for
any input W € 27,

52

Sketch of Proof |.

Case: e =le
- We assume that T(e) is a BFA such that the
language is equivalent to the language of e.
Tp(le) = (QU{s}, %, 8,5 f0 {s}, FUP)
where (Q,%,0, f°, F, P) = Tp(e)

Let B = TB(e)and B = TB('G)
When e succeeds on w, then B also succeeds on w.

In this case, ?
. le fails on w L
. B’ rejects wsince s A fU = s A true = false

53

Sketch of Proof |.

Case: e =le
- We assume that T(e) is a BFA such that the
language is equivalent to the language of e.

Ts(le) = (QU{s},%,8,sAf {s}, FUP)
where (Qa 2757 f07F7 P) — TB(e)

Let B = TB(e)and B’ = TB('G)
When e succeeds on w, then B also succeeds on w.
In this case,

. le fails on w L L

. B’ rejects wsince s A fU = s A true = false

54

Sketch of Proof |.

Case: e =le
- We assume that T(e) is a BFA such that the
language is equivalent to the language of e.

Ts(le) = (QU{s},%,8,sAf {s}, FUP)
where (Qa 2757 fana P) — TB(e)

Let B = TB(e)and B’ = TB('G)
When e succeeds on w, then B also succeeds on w.
In this case,

. le fails on w L v

. B’ rejects wsince s A fY = s A true = false

55

Sketch of Proof |.

Case: e =le
- We assume that T(e) is a BFA such that the
language is equivalent to the language of e.
Tp(le) = (QU{s},%,8,5A f0,{s},FUP)
where (Q,%,0, f°, F, P) = Tp(e)

Let B = TB(e)and B = TB('G)
When e fails on w, then B also fails on w.

In this case, 7
. le succeeds on w and consumes ¢

» B’ accepts ¢ since s A F = true N\ false = true

56

From LPEGs to DFAs [

In the same way, we can confirm that
the function I’z returns a BFA that is

equivalent to the LPEG.

Hence, we say that for any LPEG G there
exists a DFA D such that L(D) = L(G).

57

Regularity of LPEGs |.

Consequently,

1. For any DFA D there exists an LPEG G such that
L(D) = L(G).

2. For any LPEG G there exists a DFA D such that
L(G)=L(D).

= LPEG is a class that is equivalent to DFAs.

58

Outline

« Conclusion

Conclusion |.

We formalized LPEG that is an equivalent
subclass to DFA.

- PEGs whose syntax is right-linear.

Open Problem

-L(PEG) > L(CFG) problem
- If so, we can parse any CFG in linear time.

60

%% | PEG to DFA Converter & Visualizer
%

http://regex-and-pe-to-dfa.com/

4 PEWNTViz

Parsing Expression without Non Terminal (PEWNT) to DFA (Deterministic Finite Automata)

Visualize a DFA for a given PEWNT.

Enter a PEWNT.

Parsing Expression without Non Terminal (PEwWNT)

> .
2" Underlying Theory /PEWNT operators
« Powered by Nez
« Convert a PEWNT into a REwLA that works in the same way as the PEWNT TEEI ERETRIN ERErise
« A method based on Thompson's construction converts the REwLA into a Boolean "' Literal string
Finite Automaton (BFA) [1 Character class
« Subset construction with a Binary Decision Diagram (BDD) converts the BFA into A Any character
a DFA (e) Grouping

61

