
A Partial Conversion of Parsing Expression Grammars to
Deterministic Finite Automata
Nariyoshi Chida and Kimio Kuramitsu
Yokohama National University, Japan	

http://regex-and-pe-to-dfa.com	

Conversion from LPEGs to DFAs :

PEG	
 CFG	
Regular grammar

?	

=

※Open Problem	

Performance : Applying the conversion to the parsers
We performed experiments to confirm the speed-up of PEG-based parsers
by the partial conversion. The conversion is applied for each nonterminal
iff the nonterminal is aLPEG. Figure 1 shows XML grammar in PEG.
Rules written in red letters are applied to the partial conversion.
Ø  Experiment Method
We measured runtimes ten times in a row and calculated the averages of
the runtimes other than the maximum runtime and the minimum runtime.

Table 2 and Table 3 show the result of the runtimes and the number of
backtrackings, respectively.
	

Idea : Linear PEGs
A LPEG is a set of named linear parsing expressions. They are
specified by rules of the form A ← e where e is a linear parsing
expression and A is the name. The syntax of e is shown in Figure 1.

Ø Example 1 (LPEG)
A ← a A / b B / c
B ← a B / b A / c

Ø Example 2 (not LPEG)
A ← a A b / c A* / d

The syntax
is limited to
right-linear

	

Motivation :
Eliminating backtrackings
Backtracking arises when packrat parsers fail to match.
Ø Regular Grammar in PEGs

Ø  This allows to apply some techniques from the theory of RG to
PEGs.

Ø  For example, the techniques of the theory of RG are used for
faster parsing

Ø  A DFA optimization for PEG-based parsers

We formalize the subclass as linear PEG (LPEG).

Example. A ← (a / aa) b	

A b	

a	

a	
 a	

.	

a	
!	
 	
 	
 	
 	
 : and
 : or	

Step 1.	
 Step 2.	

What is a subclass of PEGs that is equivalent to DFAs?
Since PEGs are relatively new, there are several unsolved problems.
One of the problems is that the revealing a subclass of PEGs that is equivalent to DFAs.

Background : Parsing Expression Grammars (PEGs)
PEGs are formal grammars introduced by Ford in 2004.
Ø Features of PEGs

Ø  Parsed in linear time using a memorizing parser called packrat parser
Ø  Easily implemented by recursive descent parsers

Ø  There is no need to implement a lexer (i.e. PEGs are scanner-less)
Ø  Deterministic

Ø  Behavior of each operators are deterministic (e.g. repetition operators are greedy)
Ø  Recognize languages that is not context-free such as {anbncn|n≥0}

Visit the website! 	

DFAnized	

Improved!	

bad	

LPEG	

Boolean finite automata

(BFA) DFA

Step 1. Extended Thompson’s construction
Ø Convert LPEGs to Boolean finite automata

(BFAs)
Ø BFAs are generalized NFAs

Ø A state during the transition is boolean functions

Step 2. Subset construction with
 Binary Decision Diagram (BDD)
Ø Convert BFAs to DFAs
Ø BDD is used to check the equivalence

of boolean functions

