A Partial Conversion of Parsing Expression Grammars to
Deterministic Finite Automata

Nariyoshi Chida and Kimio Kuramitsu ~' | 6' “
KonohaScript

Yokohama National University, Japan
Visik Fhe websike! —> http://regex-and-pe-to-dfa.com

Background : Parsing Expression Grammars (PEGs)

PEGs are formal grammars introduced by Ford 1n 2004.
» Features of PEGs

» Parsed in linear time using a memorizing parser called packrat parser
» Easily implemented by recursive descent parsers
» There is no need to implement a lexer (i.e. PEGs are scanner-less)
» Deterministic
» Behavior of each operators are deterministic (e.g. repetition operators are greedy)
» Recognize languages that 1s not context-free such as {a"b"c?n>0}

Regular grammar
I

What 1s a subclass of PEGs that 1s equivalent to DFASs?

Since PEGs are relatively new, there are several unsolved problems.
One of the problems 1s that the revealing a subclass of PEGs that 1s equivalent to DFAs.

>:Open Problem

Motivation : Idea : Linear PEGs

Ehmlnatlng bathl‘aCklngS A LPEG is a set of named linear parsing expressions. They are

Backtracking arises when packrat parsers fail to match. specified by rules of the form 4 < e where ¢ is a linear parsing
» Regular Grammar in PEGs

> This allows to apply some techniques from the theory of RG to expression and A 1s the name. The syntax of e 1s shown in Figure 1.

PEGs. . / The syntax S
» For example, the techniques of the theory of RG are used for ST le 1 (LPEG is limited to I g?
' Xampice :
faster gaillg%A optimization for PEG-based parsers Im rove. dl A 1:) /b B(/) right-linear I Zc/: e
P , <— a C /S\A | le e
- B—aB/bA/c S p o= ¢ empy
" s \C\ | a chara;:lter t
C : any cnaracter
\ d// Dy | pp sequence
oritioed choi
» Example 2 (not LPEG) le zero or more repetition
" N &p and—predjcate
We formalize the subclass as linear PEG (LPEG). A«aAb/cA /d bad P motpredicate
Figure 1. Syntax of a linear parsing expression

1 Example. A« (a/aa)b
Conversion from LPEGs to DFAs : P (a/aa)
Step 1. Step 2.

LPEG 3 Boolean finite automata > DFA

(BFA)
Step 1. Extended Thompson’s construction\ @tep 2 Subset construction with
» Convert LPEGs to Boolean finite automata Binary Decision Diagram (BDD) @ "0l
(BFAs) » Convert BFAs to DFAs ‘O f) :
» BFAs are generalized NFAs > BDD is used to check the equivalence ST oo
» A state during the transition is boolean functions of boolean functions »
_ _ Y) (2
. File <- PROLOG? DTD? Xml 'DF:AML d
. . _ f 2.
Performance : Applying the conversion to the parsers | ¢husx < K
. PROLOG <- ’<?xml’ (!°’7?>?) '?>? §
We performed experiments to confirm the speed-up of PEG-based parsers e e T L A A
4 : : : : . : Xml <- <’ N S* Attributex (’/>? / ’>
by the partial conversion. The conversion is applied for each nonterminal T ge e ribute
iff the nonterminal 1s aLPEG. Figure 1 shows XML grammar in PEG. (Gemtast / CUSSENT)® *</* NARE &>
Rules written 1n red letters are applied to the partial conversion. Name <- NAME
NAME <- [A-Z_a-z:] (-7 / [.0-9:A-Z_a-z])
» Experiment Method *
:p . . . Attribute <- Name S* ’=’ S* String S*
We measured runtimes ten times in a row and calculated the averages of String <= "2 (12")k 2n7
. i Content <- Xml / CDataSec / Text
the runtimes other than the maximum runtime and the minimum runtime. CDataSec <- ’<![CDATA[’ CDATA ’11>’ Sx
. CDATA <= (17]]1>? V'2<V[CDATA[’ .)=*
Table 2 and Table 3 show the result of the runtimes and the number of (’<!'[CDATA[’ CDATA ’11>’ CDATA
: :) ?
backtrackings, respectively. COMMENT <= 2<lo-? (17-=>7)% 7—-37 S%
Text <- (17’<?)+
Table 2. Averages of the runtimes Table 3. The number of backtracking > <= [\tArin]
Grammar | Inputlines Normal DFA Grammar | Normal DFA . .
XML 184,966 403ms 109ms | | XML 16,589,635 1,054,513 Figure 1. XML grammarin PEG
JSON 8,518 336ms 130ms JSON 5,360,918 3,066,286

